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1 Likelihood calculations

To allow estimation of Reff and k, the infected cases in a given population must be divided into

independent subunits, such as generations of cases, transmission chains or infection clusters. We

define a primary case as a case whose infection is external to the population of interest (e.g. due

to importation from a foreign country or transmission from an infected animal). We define the

first generation of cases to be all those infected by primary (i.e. zero-generation) cases, the second

generation of cases to be all those infected by first generation cases, and so on. We define a chain

to be a single primary infection plus all subsequent infections that are linked to it. We define

an infection cluster as a group of chains that overlap in time and space so that the constituent

chains may be hard to discern (sometimes referred to as an outbreak in the literature). The subunit

definitions used in the analysis for each of the data sets considered in this manuscript are as follows:

• For the analysis of smallpox (Section 3.3 of the main text) and human-to-human transmission

of monkeypox (Section 3.4 of the main text), the data consist of descriptions of infection

clusters in which the number of cases in each generation of transmission is provided. Thus

each transmission subunit consists of one generation of spread in a cluster and can be described

as i individuals infecting j other individuals. The corresponding likelihood calculation is given

in Section 1.1.

• For the analysis of MERS-CoV transmission in the Arabian Peninsula (Section 3.1 of the main

text) as well as measles transmission in the United States and Canada (Section 3.2 of the main

text), the only available data are the number of cases epidemiologically linked within a single

transmission chain. Thus each transmission subunit consists of a complete transmission chain

and can be described by the number of cases, j, in the chain. The corresponding likelihood

calculation is given in Section 1.2. This likelihood is also used for the simulation studies of

Section 2 and Section 3.6 of the main text.

• For the analysis of animal-to-human transmission of monkeypox (Section 3.5 of the main text),

transmission subunits consist of the observed number of primary infections, m, in a cluster. It

is assumed that all primary infections came from a single exposure (or ‘point source’) event.
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Since the exposure events are recorded only when they lead to at least one primary infection,

adjustments have to be made for all the unknown exposure events that resulted in no primary

infections. The corresponding likelihood calculation is given in Section 1.3. For the human-to-

human transmission that these data are compared to, the subunits are infection clusters with

m primary cases and j cases in total (Section 1.2).

For the examples we consider in this manuscript, all transmitting individuals within a single

transmission subunit have the same values of the transmission parameters, Reff and k. However,

the cases that are infected by the individuals in a transmission subunit may have a different set

of transmission parameters. As a special case, we show how the transmission parameters of linked

transmission units inter-relate for a random network model of social mixing (Section 1.4) and apply

it to the generation-by-generation data of monkeypox (Section 3.4 of the main text).

The probabilities for each subunit in an observed set of transmission events are multiplied to-

gether to obtain the overall likelihood of the model given the data, and the likelihood is maximized

over the model parameters.

1.1 Likelihood of a single generation of transmission

A classic result of branching process theory is that the coefficients of Q(s)i provide the probabilities

that i cases collectively generate 0, 1, 2, . . . cases [1, 2]. This occurs because multiplication of two

generating functions produces all possible pairs of terms, which is analogous to considering all

possible ways that two cases can generate a given number of new cases. By exploiting the helpful

property that differentiating Q(s)i shifts the coefficients leftwards and that evaluating the resulting

function at s = 0 provides the value of the constant term, we can extract the likelihood (equivalent

to the probability of the data given the model), li→j , that i cases produce j infections,

li→j(Reff , k) =
1

j!

djQ(s)i

dsj

∣∣∣∣
s=0

(1)

The generating function of a negative binomial distribution can be algebraically summarized in

a closed form equation,

Q(s) =

(
1 +

Reff

k
(1− s)

)−k
. (2)

Applying equation 1 to our specific use of a negative binomial distribution for the generating

function gives

li→j(Reff , k) =
1

Γ(j + 1)

dj

dsj

(
1 +

Reff

k
(1− s)

)−k·i
|s=0 (3)

=
Γ(j + ki)

Γ(j + 1)Γ(ki)

(
k

Reff + k

)ki(
Reff

Reff + k

)j

. (4)

where Γ denotes the gamma function and thus Γ(x+ 1) = x!. This is equivalent to the probability

mass at j of a negative binomial distribution with a mean of (Reff i) and a dispersion parameter

of (ki). This property can be understood intuitively. If we focus on cases where k is an integer,

this relates to the interpretation of the negative binomial distribution as the number of tails that
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occur in a sequence of coin flips before k heads occur. In our case the coin has a probability of
k

Reff+k for flipping as a head. Repeating this process with i coins (analogous to observing how many

offspring are generated by i cases), is analogous to flipping one coin until ki tails occur, which is just

a new negative binomial distribution with the aforementioned scaling of the mean and dispersion

parameter.

1.2 Likelihood of an infection chain or infection cluster

We use the superscript C to denote that we are now considering the likelihood of a complete total

chain (or cluster), rather than the number of infections caused by a specified number of cases. When

all cases of a chain have the same Reff and k, the likelihood, lCj for a chain of size j is determined by

noting that a single primary case leading to j infections amounts to j cases causing j− 1 infections.

This is because all cases except the first must be caused by one of the j total cases. This needs

to be corrected by a factor of 1
j to account for the observation that only certain combinations of

transmission events will yield chains that go extinct when there are exactly j cases [3].

lC1→j(Reff , k) =
1

j
lj→j−1(Reff , k). (5)

When transmission chains get entangled together into clusters (i.e., cases overlap in space and

time), it is often the case that only the number of primary infections, m, and the total size, j, of the

cluster are known. In this case the likelihood is found by noting that j cases cause j−m infections.

Meanwhile, the normalization factor for the requirement of proper extinction is m
j [4]. Then,

lCm→j(Reff , k) =
m

j
lj→(j−m)(Reff , k). (6)

1.3 Likelihood of observing primary infections from a point-source expo-

sure

A point-source exposure for primary infection occurs when there is a single event at which multiple

individuals are infected from a single source. For example, multiple people could be infected with a

zoonotic infection through butchering and/or consumption of a single infected animal. In analogy to

what has been done for human-to-human transmission [5], we model the number of human infections

caused by an infected animal that makes contact with humans as coming from a negative binomial

distribution with mean Ra→h and dispersion parameter ka→h. However, since animal-to-human

exposures are only observed when at least one human infection occurs, the probability of observing j

cases from a point-exposure event is determined by normalizing the true probability of j transmission

events by the probability that no animal-to-human transmission occurs. The probability that no

transmission occurs is l1→0(Ra→h, ka→h). Thus the likelihood of observing j cases resulting from a

point-source exposure (denoted with the superscript P ) is,

lPj (Ra→h, ka→h) =
l1→j(Ra→h, ka→h)

1− l1→0(Ra→h, ka→h)
. (7)

Given specific values of Ra→h and ka→h, the probability that an animal-human exposure leads

to at least one primary cases is 1− l1→0(Ra→h, ka→h).
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1.4 Likelihood of a random network model

Our random network model tests a specific prediction about how transmission changes between

primary and secondary cases. The model assumes that primary cases are infected at random and

that secondary infection occurs in proportion to the number of contacts an infected individual

has [6]. Thus there is an implicit assumption that heterogeneity in disease transmission is entirely

due to variability in the number of social contacts. This implies that secondary cases may transmit

more than primary cases because the individuals with the most contacts are most likely to become

secondary cases and in turn spread disease to many others. For consistency with the prior likelihood

calculations, we assume a negative binomial distribution for the number of social contacts each

individual has. Accordingly, the generating function, Fc(s), for the number of social contacts is,

Fc(s) =
(

1 +
µ

k′
(1− s)

)−k′

where µ is the mean number of contacts and k′ is the dispersion parameter for the contact

distribution. We let T denote the constant probability of infection per contact. The number of cases

generated by a primary case is found by binomial sampling over the number of contacts. Binomial

sampling can be represented via the generating function as Gp(s) = Fc(1 − T + Ts) [7]; therefore

the generating function for the transmission of primary cases is

Gp(s) =

(
1 +

µT

k′
(1− s)

)−k′

This is equivalent to a branching process model in which Reff = µT and k = k′.

The distribution function for the number of contacts that an infected secondary case has, Fs(s),

is different from the one for primary cases for two reasons. First, each case loses one susceptible

contact because they were infected by someone. Second, to account for the linear correlation between

risk of infection (which we assume to be proportional to the number of contacts) and the number of

subsequent individuals one case will be able infect, the distribution needs to be weighted accordingly.

With these adjustments, the properly normalized generation function is [7, 8],

Fs(s) =
1

µ
· dFc(s)

ds
=
(

1 +
µ

k′
(1− s)

)−k′−1

As above, the generating function for the number of infectious offspring of secondary cases is obtained

by binomial sampling of contacts. Accordingly,

Gs(s) = Fs(1− T + Ts) =

(
1 +

µT
(
1 + 1

k′

)
k′ + 1

(1− s)

)−k′−1

Gs(s) is equivalent to a negative binomial distribution with

Reff = µT · (1 +
1

k′
) (8)

k = k′ + 1. (9)
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This provides the mathematical formalism showing that Reff is greater for secondary cases than

for primary cases in the random network model. The difference in primary and secondary transmis-

sion is more pronounced for small values of k.

2 Simulation-based validation of the method

Simulations of transmission chains based on a known negative binomial offspring distribution were

used to verify our ability to detect changes in Reff (Figure S1). Each simulation produced a distri-

bution of chain sizes for a pair of Reff and k values. Pairs of simulations having different values of

Reff were identified according the methods in Section 2.2 of the main text. As data become more

plentiful, the power to detect smaller differences in Reff increases. The power decreases slightly as k

decreases from 1 to 0.25 because a higher degree of transmission heterogeneity (i.e. lower k) results

in wider confidence intervals for the inferred value of Reff [15].
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Figure S1: Power of detecting a difference in Reff . Results from comparing two sets of simula-
tions of chain size distributions that differ in the true value of Reff . The number of observed chains
in each simulation varied as indicated by the x-axis. A baseline simulation always had Reff = 0.1
and k = 0.25 (left panel) or k = 1 (right panel). The comparison simulation had an Reff that was
greater than the baseline by the amount indicated by the color bar. The y-axis denotes the power
to detect a difference in Reff , or the proportion of simulation pairs for which a significant difference
in Reff was detected (i.e. the best-fitting model had different Reff). The curves have been smoothed
to improve legibility.

To ensure that our statistic for detecting a difference in Reff (as described in the methods section

of the main text) was not overly sensitive (resulting in a high probability of Type I errors), we

also compared simulations which had identical Reff (Figure S2). Consistent with our expectations,

comparisons of simulations having the same Reff show that we failed to reject the null hypothesis
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with 95% confidence.
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Figure S2: Type I error. Results from comparing two sets of simulations of chain size distributions
that had the same true value of Reff . The true value of Reff is indicated by the color bar. The
simulations all had k = 0.25 (left panel) or k = 1 (right panel). The y-axis denotes the type I error,
or the proportion of simulation pairs for which a difference in Reff was falsely detected (i.e. the best
fitting model had different Reff , or all of them did if there were multiple best-fitting models). The
curves have been smoothed to improve legibility.

3 Sensitivity of measles analyses to a single large chain

Here we consider the possibility that the largest transmission chain from Canada (155 cases) is

an anomalous data point because it is so much larger than second largest chain (30 cases). A

conservative approach for addressing this possibility is to exclude the large chain from the analysis.

When this is done, we no longer find a significant difference between Reff for United States and

Canada (Table 1). The inferred value of Reff for the United States increases only from 0.51 to

0.53 (the small difference occurring because the best model now has a single value of Reff), but the

inferred value of Reff for Canada decreases substantially from 0.82 to 0.53.

Given that this approach is expected to make it more difficult to identify true differences in

Reff , we performed a parametric bootstrap analysis of the probability to detect a true difference

in Reff after the largest chain in the simulated data set has been removed. The parameters for

bootstrap simulations were based on estimates of the four parameters in the two Reff , two k model

applied to the full measles data set. When matched for the number of chains in the data from the

United States and Canada, we found a probability of 0.27 for detecting the estimated difference in

Reff . In comparison, when the largest chain was included in the analysis, the parametric bootstrap

probability for detecting a change in Reff is twice as large (i.e. 0.55).
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Restrictions Parameters RUSA kUSA RCanada kCanada Log likelihood ∆AIC
RUSA = RCanada

kUSA = kCanada = 1 1 0.53 1 0.53 1 -251.6 7.3

RUSA = RCanada

kUSA = kCanada 2 0.53 0.30 0.53 0.30 -246.9 0.0

kUSA = kCanada = 1 2 0.51 1 0.60 1 -251.2 8.5

RUSA = RCanada 3 0.53 0.32 0.53 0.26 -246.9 1.9

kUSA = kCanada 3 0.51 0.31 0.60 0.31 -246.7 1.5

None 4 0.51 0.32 0.60 0.27 -246.7 3.5

Table 1: Inference results for comparing the transmissibility of measles in the United
States (1997–1999) and Canada (1998–2001) when the largest chain is removed. The
layout is analogous to Table 1 of the main text.

4 Adjusting for imperfect observation of monkeypox trans-

mission

Here we assume that each monkeypox case has an independent and identical probability, po, of

activating surveillance. It is also assumed that as long as one case in a cluster activates surveillance,

then all cases in the cluster are observed [16]. However, if no cases in a cluster activate surveillance,

then no cases in the cluster are observed. This observation model implies that the observed average

size of the clusters will be larger than the true average, because the smallest clusters are the least

likely to be seen [15, 16]. However, it also favors observation of secondary cases over primary cases

because a cluster of size one (i.e. the least likely cluster size to be observed) always contains no

secondary cases.

According to our models of animal-to-human and human-to-human transmission for monkeypox,

the true probability of a cluster of size j that has m primary cases is:

lC1→m→j(Ra→h, ka→h, Reff , k) = lPm(Ra→h, ka→h) · lCm→j(Reff , k). (10)

Summing over possible numbers of primary cases, this relation provides the overall true proba-

bility that an animal point source results in a cluster of size j,

lC1→→j(Ra→h, ka→h, Reff , k) =

j∑
m=1

lC1→m→j(Ra→h, ka→h, Reff , k). (11)

The probability of not observing a particular cluster of size j is the probability that none of the

cases activate surveillance, (1− po)j . Thus the overall probability that a randomly chosen cluster is
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Restrictions Parameters Ra→h ka→h Reff keff Log likelihood ∆AIC
Ra→h = Reff , ka→h = keff = 1 1 0.2 1 0.2 1 -177.7 7.9

Ra→h = Reff , ka→h = keff 2 0.2 2 0.2 2 -177.2 8.8

ka→h = keff = 1 2 0.1 1 0.2 1 -174.9 4.3

Ra→h = Reff 3 0.2 6.2 0.2 0.2 -171.9 0.2

ka→h = keff 3 0 0.2 0.2 0.2 -171.8 0.0

None 4 0.1 1.1 0.2 0.2 -171.7 2.0

Table 2: Inference results for comparing animal-to-human and human-to-human off-
spring distributions for human monkeypox in the Democratic Republic of Congo, 1981–
1984 when po = 0.5. The layout is analogous to Table 5 of the main text.

Restrictions Parameters Ra→h ka→h Reff keff Log likelihood ∆AIC
Ra→h = Reff , ka→h = keff = 1 1 0.1 1 0.1 1 -178.4 10.6

Ra→h = Reff , ka→h = keff 2 0.2 1.9 0.2 1.9 -177.9 11.5

ka→h = keff = 1 2 0.1 1 0.2 1 -175.3 6.5

Ra→h = Reff 3 0.1 3 0.1 0.1 -171.2 0.2

ka→h = keff 3 0 0.2 0.1 0.2 -171.1 0.0

None 4 0.1 1.6 0.1 0.1 -171.1 2.0

Table 3: Inference results for comparing animal-to-human and human-to-human off-
spring distributions for human monkeypox in the Democratic Republic of Congo, 1981–
1984 when po = 0.1. The layout is analogous to Table 5 of the main text.

unobserved is,

pCunobs(Ra→h, ka→h, Reff , k, po) =

∞∑
j=1

lC1→→j(Ra→h, ka→h, Reff , k) · (1− po)j . (12)

The probability of observing a cluster of size j with m primary infections is then the true

probability of this type of cluster occurring times the probability that this cluster will be observed,

normalized by the overall probability of a cluster being observed.

lCobs:1→m→j(Ra→h, ka→h, Reff , k, po) =
lC1→m→j(Ra→h, ka→h, Reff , k) ·

(
1− (1− po)j

)
1− pCunobs(Ra→h, ka→h, Reff , k, po)

. (13)

When we set po equal to 0.5 or 0.1, as arbitrarily chosen example values, we find that the preferred

model remains Ra→h = Reff (Tables 2 and 3).
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